Sex-ratio meiotic drive and Y-linked resistance in Drosophila affinis.

نویسندگان

  • Robert L Unckless
  • Amanda M Larracuente
  • Andrew G Clark
چکیده

Genetic elements that cheat Mendelian segregation by biasing transmission in their favor gain a significant fitness benefit. Several examples of sex-ratio meiotic drive, where one sex chromosome biases its own transmission at the cost of the opposite sex chromosome, exist in animals and plants. While the distorting sex chromosome gains a significant advantage by biasing sex ratio, the autosomes, and especially the opposite sex chromosome, experience strong selection to resist this transmission bias. In most well-studied sex-ratio meiotic drive systems, autosomal and/or Y-linked resistance has been identified. We specifically surveyed for Y-linked resistance to sex-ratio meiotic drive in Drosophila affinis by scoring the sex ratio of offspring sired by males with a driving X and one of several Y chromosomes. Two distinct types of resistance were identified: a restoration to 50/50 sex ratios and a complete reversal of sex ratio to all sons. We confirmed that fathers siring all sons lacked a Y chromosome, consistent with previously published work. Considerable variation in Y-chromosome morphology exists in D. affinis, but we showed that morphology does not appear to be associated with resistance to sex-ratio meiotic drive. We then used two X chromosomes (driving and standard) and three Y chromosomes (susceptible, resistant, and lacking) to examine fertility effects of all possible combinations. We find that both the driving X and resistant and lacking Y have significant fertility defects manifested in microscopic examination of testes and a 48-hr sperm depletion assay. Maintenance of variation in this sex-ratio meiotic drive system, including both the X-linked distorter and the Y-resistant effects, appear to be mediated by a complex interaction between fertility fitness and transmission dynamics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary characterization of "sex ratio" and rediscovery and reinterpretation of "male sex ratio" in Drosophila affinis.

In D. affinis "sex ratio" (sr), a form of meiotic drive characterized by the production of mostly or only female progeny by certain males, is associated with two different X chromosome sequences, XS-I XL-II and XS-II XL-IV. The behavior of the two sequences differed, depending on the Y chromosome constitution, being either Y(L) or 0. Males with sequence XS-II XL-IV and Y(L) produced progenies w...

متن کامل

Suppression of Sex-ratio Meiotic Drive and the Maintenance of Y-chromosome Polymorphism in Drosophila.

Like several other species of Drosophila, D. quinaria is polymorphic for X-chromosome meiotic drive; matings involving males that carry a "sex-ratio" X chromosome (XSR ) result in the production of strongly female-biased offspring sex ratios (Jaenike 1996). A survey of isofemale lines of D. quinaria from several populations reveals that there is genetic variation for partial suppression of this...

متن کامل

Sex-ratio meiotic drive in Drosophila simulans is related to equational nondisjunction of the Y chromosome.

The sex-ratio trait, an example of naturally occurring X-linked meiotic drive, has been reported in a dozen Drosophila species. Males carrying a sex-ratio X chromosome produce an excess of female offspring caused by a deficiency of Y-bearing sperm. In Drosophila simulans, such males produce approximately 70-90% female offspring, and 15-30% of the male offspring are sterile. Here, we investigate...

متن کامل

The sex-ratio trait in Drosophila simulans: genetic analysis of distortion and suppression.

The sex-ratio trait described in several Drosophila species is a type of naturally occurring X-linked meiotic drive that causes males bearing a sex-ratio X chromosome to produce progenies with a large excess of females. We have previously reported the occurrence of sex-ratio X chromosomes in Drosophila simulans. In this species, because of the co-occurrence of drive suppressors, the natural pop...

متن کامل

Recurrent selection on the Winters sex-ratio genes in Drosophila simulans.

Selfish genes, such as meiotic drive elements, propagate themselves through a population without increasing the fitness of host organisms. X-linked (or Y-linked) meiotic drive elements reduce the transmission of the Y (X) chromosome and skew progeny and population sex ratios, leading to intense conflict among genomic compartments. Drosophila simulans is unusual in having a least three distinct ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 199 3  شماره 

صفحات  -

تاریخ انتشار 2015